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Nonlinear differential escape games with geometric and integral constraints on 
the controls are examined under the assumption that at each instant ‘t the evad- 

er, when constructing his own control, uses the values of the phase vector z (s) 

and of his opponent’s control u (s) for all s such that s < t - z (z (t)), where 

r (z) = p (z) / c (e). The function o (z) tends to zero if the distance between 
z and the terminal set tends to zero; c (2) is the positive ” rate of propagation 

of information”. Lower estimates are obtained for function c (z), for which the 

fulfilment of the escape conditions in [ l- 31 guarantees the existence of an 

escape strategy for any initial position. 

The motion of a vector z in an II -dimensional Euclidean space Rn is described 

by the equation 

dzldt = f (t, z, U, v), t E R1 = (--00, +m) 
( 1) 

z E R”, u E P, u E Q 
where u and v are the controls, P and Q are sets in R" , and f (t, z, u,, V) is a fun- 

ction continuous on Y = R1 X R” X P X Q . Player U determines the values 

of parameter u and player v, of parameter V. The admissible controls of players 

U and V are measurable vector-valued functions U (t) and V (t) satisfying geomet- 

ric or integral constraints. Controls U (t) and V (t) satisfy geometric Constraints if 
u (t) E P and v (t) E Q, t E R1, P and Q are compacta in Rn; controls u (t) 

and u (r‘) satisfy integral constraints if 

+f,u(t)Isdt<pa, +f,v(t),2dt<uz, u(t)~P, v(t)~Q, tER1 

The se;* = {z 1 q(z) r;, Q, (z) = 0}, where cp (2) and @ (z) are scalar 

continuously differentiable functions, is called the terminal set. 
We say that the data listed describes a differential game which we call game(l.l) 

when there are geometric constraints on the controls or game ( 1.2) when there are in- 
tegral constraints. We assume that in game (1.2) the set Q contains the null vector 

of Rn, We denote R (u, VI = 1 + IUI + Ivl, P(r) = {ulu E P, juj < 
4, Q (3 = (4~ E Q, Ivl < r), r,, = inf {rlP (r) = P, Q (r) = Q}; if 
P and Q are compacta, 7-s < +oo. 

Let the function f (t, z, u, v) satisfy the following conditions: 
1) for any r > 0 there exists N (r) < -koo such that for all 

Y, lziI<r, i = 1, 2 
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If (t, 21, u, v) - f (6 2.2, u, 4i < iv (r.) R (u, 41 21 - 51; 
2) a constant B > 1 exists such that for all (t, z, U, u) E Y 

If (t, 2, ~9 +I < BR (u, n) (1 + 121) 

Then for any initial position (to, ~a) ‘Z R1 X R” and any admissible controls u(t) 
and u (t) subject to geometric or integral constraints a unique solution z (t) of Eq, 

(1) exists in Carathiodory’s sense, which is called the motion. From 2) it follows that 
for any motion 2 (t) in game (1.1) 

Iz(t) - 2 (Ml < It - 4ll s1 (2 (to)> (2) 

for all t E J(tJ = [to - 1~ to f 41 and for any motion z (t) in game ( 1,2) 

Iz (t) - 2 (to)/ < It - toI*” 8% (2 (to)) (3) 

for all t E J (to), where Si (z) = Bt (1 + lzl), BI = B (1 + 2,) exp [B 
(1 -I- 2ro)I for game (1.1) andB, = B (1 + p + a) exp [B (1 + p + (T)] for 
game (1.2). 

If Xi (2) = {y I I&! - 21 Q Si (Z)}, i = 1,2, then for any motion 2 (t) we 
have z (t) E Xi (z (to)) for all t E J(t,) . The game starts from the initial pos- 
ition (to, zo) E R = R1 X R”, where z. @ M; motion z (t) is already determin- 
ed on the half-open interval (- 00, to] and 

0s (t) = a* - j lu(t)pe, p%(t) =p*- .r IQW 
-00 

T h e i n f o r m a t iye n e s s c o n d i t i o n, At each instant t player 
Y constructs his own control u (t) by using information on the values of z (s) and 

U (S) for all s < t - T (z (t)), where ‘G (z) is a positive function on R” \ M . 
If for the given initial position we can find a method for constructing an admissible 

control u (t) in accord with the informativeness condition, then 2 (i!) f$ M for all 

t > i!o under any admissible control u (t) , then we say that an escape strategy exists 

for player Y from the initial position (to, 20). 

Let an operator D associate the function 

Dh(h 2, u, u) = $(t, 8) + (grad,h(t, z).f(t, 2, u, 4) 

with each differentiable function h (t, Z) (the argument (t, 2) will be denoted b) the 
symbol ( *) and the argument (t, Z, U, u), by the symbol [a 1). 

Condition 1. Positive integers k, and l(k < 1) and scalar functions’ hi 
(.), gi [ -1, i = 0,. . ., k, Hi (*), Gi [a 1, i = 0,. . ., I, continuously differ- 

entiable with respect to (t, z) exist such that 

h,(.).=cp(z), H,(.)s@(z), g,[.]rG,[.]~0 

g, ].I = g’(u) + g”(t, z, u), G,[.I = Gl(u) + G2(t, z, u) 

Dhi 1.1 = hi+1 (*) + gi+l [*I, i = 0,. . ., k - 1 

DHi f-1 = I&+x (*) + Gi+l [*I, i = 0,. . ., I - I 

By L we denote a two-dimensional Euclidean space of row-vectors a = [al, u2], 
where ai E R1, i = 1, 2; by s, we denote a sphere of radius r in L : S, = {~(a 

E L, Ial = ((a’)” + (a2W < r>; by 3tz we denote the vector[cp (z), Q, (z)]. 

Let I (.) = [I1 (.), Z2 (.)I, A (.) = [Al( .), A2 (.)I, h (z)be a scalar function, 
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We denote 

C o n d i t i o n 2 . 1. Scalar function y (t, 2) and vector-valued functions 
z (t, z) and A(t, z), all continuously differentiable with respect to (t, z) , and a 

positive function I’ (z), continuous on I?’ , exist such that for all (t, z) E R 

a) there is fulfilled the inclusion (rough case, k < 1). 

ST(.) c wo,n ( * ) 

or (fine case, k < I) 
11 (*) c wo,n (*I; 

b) r (2) < min {y (s), A’ (.), A* (v)} 
C o n d i t i o n 2 . 2. Scalar function ~(t, 2) and vector-valued functions 

I (t, z) and A (t, z) , all continuously differentiable with respect to (t, 2) , and 
positive functions h(z) and I’ (z), continuous on R” , exist such that for all (t, z) 

EZR 
a) for all r > 0 and E E (0, 1] there is fulfilled the inclusion (rough case, k 

or (fine case, k < I) 

b) I’(z)\<p(z)xmiq{y(.), Al(+), @(*)I 
C o n d i t i o n 3. A continuous function m 

(6 2, % u) E y 

lgf [.I 1 < InzIk+l’l-i R (u, u) m(z), 
IGi I41 < (nz 1 l+l”R (u, v) m (z), 
A I.1 < R (u, u) m (z) 

(z) > 1, exists such that for all 

i = 1,. . ., k - 1 
i = 1,. . ., 1 - 1 

~~t~l=I~~o~~Jl+I~~k.I~1~+l~~oI~ll+ 

I~~,~~ll+l~~~~ll+~~~l~~‘t~ll+l~~~~~ll~+ 

I g1 04 I + I@ @* 2% 4 I+ I G’ (4 I+ 1 @ (4 zt ~1 I> 

Condition 4. 1. ~(2) = Inz[f~(~) 
Condition 4. 2. 7 (2) = 1rrZf@ /c (z), a > 2E + 3. 
Theorem 1. Let Conditions 1, 2.1, 3 and 4.1 be fulfilled for game (1.1) 

and let c (2) > cr (z), where Cl (a) is a positive function determined by game (1.1). 

Then for any initial position (to, zo) E R we can construct an escape strategy for 
player v in accordance with the informativeness condition. 

T h e o r e m 2. Let Conditions 1, 2.2, 3 and 4.2 be fulfilled for game (1. 2) 
and let c (z) > c, (2) , where es (z) is a positive function determined by game (1.2). 
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Then for any initial position (to, 20) F fi we can construct an escape strategy for 
player V in accordance with the informativeness condition if 

‘i,). 
CF~ (to) > 4p2 (t,_, - 

kt T E (0, 5’21 and t* E R1 , assume that motion Z (t) has been defined 
on (- 00, t*] and denote CJ = t - t*, t, = t* - %, z (t*) = Z,, 2 (t*) = Z*. 

From Condition 1 it follows that 

hi (tap 29) + 
i=o 

kt . 

’ LS 
i=l ty 

y--!g gi (s, z (4, u (s), 2.J (s)) ds + 

(4) 

Dhds, z(S), u(s), u(S))& a>0 

An analogous expression is obtained for @ (z (t)) by replacing k by l., h by H 

and g by G. To construct the evasion maneuver we make use of the following re- 
presentation for 3-u (t): 

?fz (0 =T+I+K t 51 

L1 (s - IY:, 2 (s - T))) ds 

Expressions for T2 and I2 are obtained from those for T1 and I1 by replacing 

k by I, h by I$ and g by G . From Condition 3 and from (2) and (3) it follows 
that for any motion z (t) with t E J (to) 

1712 (0 - JW (to) I < It - toI PI (z(t&) forgame(l.4) (6) 

In2 (0 - a-U WI < It - tOJi/l Ps (2 (to)) for game (1.2) 

are functions continuous on R”- 
By z [t] we denote the vector z (t - z (z (t))) which, according to the inform- 

ativeness condition, is known to player V at instant t. Assuming that Condition(4.i) 
is filfilled for game (4.i), i = 1, 2 , and that c (2) > max(2 1 x2 f, 2P1 (2)) 

in game (1. I) or c (2) > max (2 I nz Ia, (2 ITCZ lzaB1 P, (z))‘~z} in game (1.2) and 

using (61, we get that 7 (2 (1)) < 1/z and 1/2 jnz (t) 1 i\ lnz ItI l < 3/a Iadz (t) I 
for any motion 2 (t). 

Proof of Theorem 1. For any 8 E (0, 1/21, w 6% SI and t, F R1 

we denote by VI (0) ( w = (t,, 6, w)) the operator VI: tt,, t, + 61 x R” x 
P + Q which associates with each triple (t, z, u) the lexicographic minimum of 
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vectors u from set &?I (0; t, z, u)’ such that F (8, Z, 11, v) = y (t, z) w in the 
rough case and F (t, z, u, U) = (~9 + w2 (t - t*) / 6) A (t, z) in the finecase, 
From Condition 2.1 it follows that set 521 (w; t, 2, a)is nonempty for t E ft,, 
+ 61; the control v (t) = VI (u; t, 2 (t), u (t)) 

t, 
is admissible for any absolutely 

continuous function z (;t) and admissible control u (t) , We denote ( CI and Ni are 
some constants) 

n (2) = min (1, Iawl), nl (2) = N&(z)Pl(z) (1 + P~E+l (2)) 

L e m m a 1. If Conditions 1, 2.1 and 3 are fulfilled for game (1, l), then con- 
stants CL E3 (O,ll and NI > 1 exist such that for any motion z (t) defined on ( - 

00, $*I, any o* E (0, 61, (z*)land any z EZ fO$ 01 (z,)o*l there exists a vector 
w* E & depending on Z* and 7, such that the control Y (t) = VI (0,; f - 2, 2 
(t - ‘0, u (t - z)), t E It*,, t* -t- h(z,)l(~,=(t*, 81 (z*), we)), ensures the 

The following rep~entation holds under the indicated choice of control v (t) : 

m (t) A (4 = T A (0) + w + dA (a) (81 

where A (a) is the matrix inverse to matrix diag {a&, ad} in the rough case or to 
matrix 

B 

a# qQsk+l 

W1 %a$+’ I 

in the fine case, and a = y (t*, z,), q= Ai (t*, a,), i = 1, 2, ak =(k/(k + I)& (z*). 
Using (2) and Condition 3 we obtain the estimates 

I a’ J q RI (k, u, T) ml (4 I da I f a, (4 or z) “Q (5s) (91 

CT Et lo*, 81 (&)I, 7 E [O, % (4 a*1 

RI (k, G, z) = alEt’ _i U’-I% + Tk 

for the compon~~ of vector d = Id It @J. The validity of Lemma 1 follows from Pont- 
riagin’s lemma [I], representation (8) and estimates (9). 

Let us describe the escape strategy of player V from the initial position (to, ~0) 
E R. We set 

We define a sequence of instants ff < %*, i = 1, 2,. - e 

Inz It*11 = n (ZO) 61 (2 [&I) 

In2 Ml > n (zO) 61 (2 M), t E It&, Q) 

g: = min {ti 3_ & (2 (ti - Tj)), tj’} 
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lrtz Iti’1 I = 6n (z”), Inz ItI1 < 6n (P), t ts Iti, ti’) 

to” = to, z” = 2 it,1 

On the interval [ti, ti*l player V applies the special control 

u(t) = Vl (at; t - Ti, 2 (t - Ti), u(t - Q)) 

(ai = n (2”) @I* (2 Itif) m (2 b$l) 

Wi =(ti -Ti, el (Z(ti - zi))f Wi) 

zi = 2 (ti - Ti) 

which according to Lemma X ensures the estimate 

In;2 (t)l > c1r (2') (t - tp, t E [tt + n (2”) Cl (2 It&, ti*1 ( 10) 

Using the first estimate in (6) and (lo), we obtain 

Inz (Ol a ;i* f=w> tE [Et, tj + n (2”) 01 (2 ItJ)] 

Inz(t)l~clr(zi) tn tzo) u1 tz [til))c+ll tEIti + ?t (Z”) Ul (Z[ti]), ti*] 

Since 
1%z &*I I> min (472 (z”), lizcl I? (z’) ffl’+l (z”)} > n (I’) 61 (z tti*l) 

we have that ti* < ti+r for all i > 1. On the interval [ti*, ti+J player V’ app- 
lies an arbitrary admissible control. We denote 

Then, if c (z) > cl (z) , we have 

r(Z(t))\< 2~~~~~~~ < n (6 81, (2 tt,il) GI (2 Itiff = xi 

t E bi, ti*1 

Consequently, player V'S control satisfies the informativeness condition. Thus, for 

the initial position (to, 20) & R we have coustmcted a strategy that is in accord with 

the informativeness condition and ensures the fulfilment of the inequality 

Ins (Ql > (n (z”))r+l Xl (2 (mv t > to 

Proof of Theorem 2. For any E E (Cl,il, 6 E (0, V21 andw 655’1 

we denote by Vz (Y) (Y = (t,, ZY,, 8, 6, W)) the operator which associates with each 

triple (t, z, u) E D (v) = It*, t, f 61 X R” X P the lexicographic minimum 

of vectors v from the set 52s (v; t, z, u) such that F (t, 2, U, V) = W (z+) Y (t, 

z) w in the rough case and qt, 2, 24, v) = q.k (z*) (WI + zfJa (t - t,‘)“d w 
A (t, 2) in the fine case, 1 V 1 < 1~ 1 -/- E. From Condition 2.2 it follows that set fzs 

(Y; t, z, u) is nonempty for all (t, 2, u) E D (v) ; f or any absolutely continuous fun- 

ction 2 (t) (2 (t*) = z*) and for a measurable vector-valued function u(t) E p 

the vector-valued function u (t) = Vz (Y; t, Z (t), U (t)) is measurable and satis- 

fies the inequality 
Ir4]\( In( + n (11) 

We introduce the notation (es and Ns are some constant& 

V4 (Z) = NsSs(s)Ps (4 (1 + Par*l (2)) 
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02 (4 = c2min{+($$)aj, 02+(z) =,~mi&32(y) 

p2* (2) = ug;*7*)P2 (!I) 

L e m m a 2. If Conditions 1, 2.2 and 3 are fulfilled for game (1,2), then con- 
stants ~2 E (0, 11 and N2 > 1 , determined by game (1.21, exist such that for 
any motion z (t)’ defined on (- 00, t*j, any B E (0, 11, any (J* E (0, es* 
(z*)], and any z E (0, (e2ea (z*) o*)~] there exists a vector we E Si depend- 
ing on %V a and ‘t, such that the control v (t) = Vs (v*; t - IY, z (t - T), 

u (t - T)), t E It*, t* + 8’02 (%)I (Y; = (t*, z*, E, E+ f32 (zJ, w*)) emur- 

es the fulfilment of the inequality 

In2 (t) 1 > ec,r (z*) (t - t*)‘+‘/*, t E [t* + u*, t* + e28,(z,)l (15.9 

Representation (8) holds under the choice of control u (t) indicated in the lemma, 
where matrix A (u) is inverse to the matrix diag {b&, bo’} in the rough case or to 

the matrix 

w 

b,ak b,&sk++ 

baa’ b2f$s’+‘1’ 
1 

in the fine case, and 

b = ep (G) Y (&+, %A, + = ep (+.) Ai (&, zJ, i = I,2 

pk = k (e, (z*))-‘h l (1 - s)%/‘ds 
s 

Using (3) and Condition 3 we obtan’the estimates 

I a1 I< R, (k, (J, 7) Q&J, Is I < & 6 0, ~1 m2 (d 

u E (a+, asea (ZJI, 7 E (0, (E202 @*I 021 

(13) 

R2 (k, (J, 2) = 
uk+l/r + uk-I$Iz + uk-s:t + =k-‘!z 

for the components of vector d = [dl, $1. The assertion of Lemma 2 follows from 
representation (8), estimates (13) and Pontriagin’s lemma [1], 

We denote 

82 (2) = min { 1, V2 c2ug$zjr (Y) ei+%)j 
2 

02 (4 = (& > 

x2 (4 = vgj.z, min {l/2 82 (Y), c2r (Y) C” (Y)) 

We set 

Ei = eoi-‘, i = 1, 2, . . ., c(s) = 2 i-’ 
i=l 

B 
= min 

From Condition 4.2 it follows that 4 p > 1, i, e., 5 (48) < + cm. Let us define 
the intervals [tr , ti*j of active and [t i*, ti+l) of passive behavior of player v, 
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Foreach i =1,2,. . . we define the instant te as follows: 

In2 [&II = e~(z+%2 (2”) 6, (2 It& 

In2 ItI\ > r~(z”tf n (2) 6, (2 bl), t E [tiql*, ti) 

while the instant ti* = min {ti -k Q2% (2 (ti - TV)), ti’}, where ri is defined 
below and ti is such that 

In2 [ ti’J 1 = ‘/* Ei l/cm (pz (~O))Z/Q 

In2 ItI] < ‘/2 8i l’C2fJ) (n (z”)p’“, t E [tt, ti’) 

From the definition of instants ti and ti and from the second estimate in (6) 
it follows that 

tt* - ti > EilI@ (n (2”))” u3, (2 [EJ) ( 14) 

On the interval [ti, &*I player V applies the special control 

u(t) = v, (Yt; t - zi, Z (t - q, u (t - %)) 

zi = &+s (n (2”) es, (2 It& CT2 (Z rt,l))2 K (Z I&l) 

Vi = (ti - rip Zi, Ei, Eiz 0s (Zi), Wi) 

K (Z) = min (llvgj;z, 02 (Y)) 

From the second estimate in (6) and from Lemma 2 follows the existence of a vector 
Wi E sr such that control v (t) ensures the estimates 

In2 (t)l > l/4 1 JTz bill, t E [ti, ti + (n (zo))2 cI$j (’ [tt.l)l 

In2 (t)/ > &$.J (8) (t - tp’y t E It; + (a (z”))2~2~z~~~~~, Cl 

Hence we get that 

1312 (t) I > t$Qtl)* (n (z0))2~+l ‘x2 (2 (Q), t E Itt, t:1 
(15) 

and 

In2 k”JI > a$?) n (z”) h2 (2 [t**l) 

i.e., ti* < tf+l, i > 1. 

player V’s control is set identically equal to zero on the interval [ti”, k+r) . 

Let c (4 > c2 (4 , 

c2 (2) = (2 ) nz J”-l P2 (z))‘/~, 

6a+1Pa, (Y) 
uz$) K (Y) (4 (Y) tfae (Y))’ 

Then Z (Z (t)) < %i, d E [ti, 4 1. Consequently, the control v (t) constructed sat- 
isfies the informativeness condition on interval [ti, cl. From estimate (1% follows 

ti* ti* 

[~r.J(t)~2&<2 ~~u(t-~i)12+2ei4 

ti 

For all i = 2,3,. . . we have t+r < ti - Tit because if tf - r&r \i ris, 

‘ti < $~4c”6 (?8 (2”))” K (2 [tiI) < EtLf (TZ (2”))” a2 (Z [t&11) 
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consequently, ‘ci < $!_I - i&r < ti - i$-1; since Z1 < r/s, 
for all i > 2. Hence 

h-1 \< 4 - '61 

00 00 k+1 k"z, 

Jiv ~12~ 2 (2 J 1~ w 12dt + S I u(t)ladt)+2e045(4~)~uo"(lo) 
to i=z Q-1 t1--zI 

It was shown above that ti > tr”r for all i > 1; from (14) it follows that tf +- 
00 as i-too. The escape strategy constructed in accord with the informativeness 

condition guarantees estimate (15) for all t E [ti, &+I], i > 1. Theorem 2 is prov- 

ed. 
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