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Nonlinear differential escape games with geometric and integral constraints on
the controls are examined under the assumption that at each instant ¢ the evad-
er, when constructing his own control, uses the values of the phase vector z (s)
and of his opponent's control u (s) for all s such that s<Ct— T (z (1)), where
T (z) =p (2) / ¢ (8). The function o (z) tends to zero if the distance between

z and the terminal set tends to zero; ¢ (z) is the positive "rate of propagation
of information”., Lower estimates are obtained for function ¢ (z), for which the
fulfilment of the escape conditions in [ 1 — 3] guarantees the existence of an
escape strategy for any initial position,

The motion of a vector z in an 7 -dimensional Euclidean space R™ is described
by the equation (D
dz/dt = f (¢, z, u, V), t & Rt = (—00, -00)

R ueP,vesQ

where u and v are the controls, P and Q are setsin R™ , and f (¢, 2, u, V) is a fun-
ction continuouson Y = R X R™ X P X @ . Player U determines the values
of parameter u and player V, of parameter v. The admissible controls of players

U and V are measurable vector-valued functions u (£) and v (f) satisfying geomet-
ric or integral constraints, Controls u (&) and v (¢) satisfy geometric constraints if
u() S P andv(f) & Q, t &= R, P and @ are compacta in R"; controls u (f)
and v (f)satisfy integral constraints if

oo 00
[ uopa<e, [ lpopa<e, speP, v)sQ, teR

The set M = {z | ¢ (z) = 0, @ (2) = 0}, where ¢ (2) and @ (z) are scalar
continuously differentiable functions, is called the terminal set.

We say that the data listed describes a differential game which we call game(1. 1)
when there are geometric constraints on the controls or game (1. 2) when there are in-
tegral constraints, We assume that in game (1. 2) the set @ contains the null vector
of R*, WedenoteR (u, v) =1+ [u|+ p|, P(r) ={ulu €P, [ul<<

Y, Q) ={vesQ, |<r}, ro=inf {r|P(r) =P, Q(r) = Q}; if
P and Q are compacta, ry << 400,

Let the function f (¢, 2, u, v) satisfy the following conditions:

1) for any r >> 0 there exists N (r) << +00 such that for all (£, 2;, u, V) &

Y, lzi|<rvi=172
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'f (t, %y, U, v) - f(t’ Zg, U, U){ < N(T‘) R (u’ U)‘ 2y — zzl?
2) a constant B > 1 exists such that for all (¢,z,u,v) =Y
If (t, 2, w, )| << BR (u, v) (1 + | z])
Then for any initial position (o, o) & R' X R™ and any admissible controls u (¢)
and v (¢) subject to geometric or integral constraints a unique solution z (£) of Eq,
(1) exists in Carathéodory’'s sense, which is called the motion, From 2) it follows that
for any motion z (#) in game (1. 1)

2 () — 2z (t)] << |8 — ol S1(2 (%)) (2
forall £ &= J(to) = [ty — 1, £ + 1] and for any motion z (¢) in game (1. 2)
12 (2) — 2 (2| << 1 — tol= S5 (2 (1)) 3

for all t & J (8,), where S;(z) = B; (1 + |z|), Br = B (1 + 2r,) exp [B
(1 + 2ry)] for game (1.1) and B, = B (1 4 p + o) exp [B (1 + p + o)l for
game (1, 2).

If X, ={ylly—zl<S:i(2)}, i =1,2, then for any motion 2 () we
have z (t) & X, (2 (t,)) forall t & J (,) . The game starts from the initial pos-
ition (#,, 29) & R = R' X R™, where z, && M; motion z () is already determin-

ed on the half-open interval (— 00, t,] and
t

t
o) =~ | lpwpd, pW=e— | luoPd
—00 — 00
The informativeness condition. Ateachinstant ¢ player
V constructs his own control v (#) by using information on the values of z (s) and
U (s) forall s<C t~7T (2 (£)), where T (z) is a positive function on R"\\ M .
If for the given initial position we can find a method for constructing an admissible
control v () in accord with the informativeness condition, then z () g€ M for all
t > to under any admissible control u (f),then we say that an escape strategy exists
for player V from the initial position (£, Zp).
Let an operator D associate the function

Dh(t, z,u, V) = %—(t, z) - (grad, h(t, 2)-f (¢, 2, u, v))

with each differentiable function & (£, 2) (the argument (%, 2) will be denoted by the
symbol (+) and the argument (%, 2, u, v),by the symbot [-]).

Condition 1, Positive integers k, and I(k < l) and scalar functions h;
(+), &1L, i=0,.. &k H;(), G;1-]1,i=0,..., I, continuously differ-
entiable with respect to (¢, z) exist such that

ho()=¢(z), Ho()=@(2), gl-1=Go[-1=0

g [-1=g'(v)+ g (t, 2z, u), GIl-1=G(v)+ Gt 2z, u
Dhi [] = hi+1(') + fi+1 [], i = O,. . oy k—1

DH; 'l =Hyu (') +Gnul-1,i=0,... 1—1

By L we denote a two-dimensional Euclidean space of row-vectors ¢ = [at, a’},
where ai € R!, i = 1, 2; by S, we denote a sphere of radius 7 in L : S, = {ala

& L, la| = (@) + (@ < 7}; by az we denote the vectorlq (z), D (2)].
Let 1(-) = [I1(-), B ()], A (-) = [A(-), A%(-)], A (2)be ascalar function.
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We denote
Fl1=Igl1/k, GI1/1
W?—,T(')= ﬂ ( U F(t1 Z, U, U)-—'l(t, Z))
usP(r) peQ(r+eMz))
Ie(:)= U evA(:), n()= min A(y)
Tel-1. 1] vEX(2)

Condition 2. 1. Scalar function y (¢, z) and vector-valued functions
(¢, z) and A(¢, ), all continuously differentiable with respect to (£, z) , and a
positive function I' (z), continuous on R"™, exist such that for all (¢, 2) = R

a) there is fulfilled the inclusion (rough case, &k <C I}

Syey & Wo,re (+)

or (fine case, k<1)
Li() S Wor ()

b I'(z2) <min {y(+), A*(:), A (-)}

Condition 2., 2. Scalar function ¥ (f, ) and vector-valued functions
I(t, 2) and A (t, z) , all continuously differentiable with respect to (£, z) , and
positive functions A (z) and I'(z), continuous on R™, exist such that for all (¢, 2)
=R

a)forall r>0 and e (0, 1] there is fulfilled the inclusion (rough case, k

<)
Sev(-) _ We,r (‘)

or (fine case, k<< 1)
IS(')CWB,T(')
b) T (2) < p(z)xmin{y(-), A*(-), A*(-)}
Condition 3. A continuous function m (2) > 1, exists such that for all
(s, u,n) &Y

g << e Ru, vy m@z), i=1,..., k—1
G < nz [ R, v)m(z), i =1,..., I —1
A1 R (u, v) m(2)
(A[-1=|Dho[-1|+ [Dh [-1[+ | DHo [ 1] +

| DH, f-HHD-n-m-‘gl (D1 + | DA 1) +
[g*@) |+ g2t 2, w) |+ |G* )| + | G* (¢, 3, w) )

Condition 4,1, T(2)=|mnz|/c(z)

Condition 4.2 1(2) = |nz*/¢c(z), & > 21+ 3.

Theorem 1, Let Conditions1, 2.1, 3 and 4.1 be fulfilled for game (1. 1)
and let ¢ (2) > c1(2), where c1(2) is a positive function determined by game (1. 1).
Then for any initial position (fy, Z¢) & R we can construct an escape strategy for
player V in accordance with the informativeness condition.

Theorem 2, LetConditions 1, 2.2, 3 and 4.2 be fulfilled for game (1. 2)
and let ¢ (2) > ¢, (z) , where ¢, (2) is a positive function determined by game (1. 2).
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Then for any initial position (Zy, Z¢) & R we can construct an escape strategy for
player V in accordance with the informativeness condition if o2 (to) > 4p® (£, —
1
f2)-

Let 1< (0, Y] and £* & R , assume that motion % (£) has been defined
on (— oo, t*] and denote ¢ = ¢ — t*, ¢, = * — 1,3z (£x) = 24, 2 (F¥) = 2*.
From Condition 1 it follows that

(4)
cp(z(z))——- ks CE = P

=0
E

' S (tus)‘)'l gi(s, 2(s), u(s), v (s)) ds +

1=1

“‘S’ L= Dhy(s, 2(s), u(s), v(s) ds, 630

*

An analogous expression is obtained for @ (z (#)) by replacing k by I, h by H
and g by (. To construct the evasion maneuver we make use of the following re-
presentation for mz (f):

n(l) = T+ 1+ K ¥
Z (6+T) B (t*,z*)+ [ (f4» Z*)
=0
t
gk
7t - S%f_:%—(gk( T, 2(s — 1), u(s — 1), v(s) —

e
s — 7, z(s — 1)) ds

Expressions for 72 and I® are obtained from those for 7 and I! by replacing

k byl, hby H and g by G . From Condition 3 and from (2) and (3) it follows

that for any motion z (f) with ¢ & J ()

|z (8) — nz (L) | << |t — &) P1 (3(f,)) forgame(1.1)  (6)
|z (8) — qz ()| < |t — to|'* Py (2 (£)) for game (1.2)

(P;(z) = By max m(y),i =1, 2, P;(3)
veX,;(2)

are functions continuous on R

By z [t] we denote the vector 2z (¢ — 7 (2 (¢))) which, according to the inform-
ativeness condition, is known to player V' at instant £ Assuming that Condition (4.1)
is filfilled for game (1.i), i =1, 2, and that ¢ (z) > max{2|nz|, 2P, (z)}
in game (1.1) or ¢ (z) > max {2 |nz|% (2 |nz[**? P, (z))/:} in game (1. 2) and
using (6), we get that T (z (¢)) </, and ¥, |mz (£)| < |nz (8] < 3y |mz (2)]
for any motion z (2).

Proof of Theorem 1 Forany 6 & (0,%,), wes S1andt, & R?
we denote by V1 () (@ == (¢4, 8, w)) the operator Vy: [t,, ty + 8] X R" X
P — Q which associates with each triple (¢, z, u) the lexicographic minimum of
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vectors v fromset Qi (w; ¢, 2, u) suchthat F (4, 2, u, v) = y (£, 2) win the
rough case and F (¢, z, u, v) = (w' + w* (¢t — £,)/6) A(t, z) in the finecase,
From Condition 2, 1 it follows that set Q1 (©; ¥, 7, u)is nonempty for ¢t & [f,, 1,

+ 81 the control v (£) = Vi (a3 ¢, z (£), u (¢)) is admissible for any absolutely
continuous function z (f) and admissible control & (£) . We denote (¢1 and N1 are
some constants)

r (z) = min {1, [nz]}, m(3) = N1Sy(2)P1(z) (1 + P,** (3))

. 1 r .
o= eumn (L8], 0,09 min o

Pie(2) = uggfﬁl’: )]

Lemma 1, If Conditions 1, 2,1 and 3 are fulfilled for game (1. 1), then con~
stants ¢1 € (0,1] and N1 > 1 exist such that for any motion z (#) defined on {—
o0, t¥*], any 6* & (0, 8,4 (z*)]and any 7 & [0, 01 (2,)0*] there exists a vector
wy & S1 depending on 2, and T, such that the control v () = Vi(oy; £ —7T, 2
(t—1), u(t—r), tlt*, * +0u(z,)] (0s=(fe, 01 (2,), w,)), ensures the
fulfilment of the estimate

iz (6)] > il (z4) (8= )%t 1* + 0%, 2 + 0 (2] D

The following representation holds under the indicated choice of control v (f):

nz (t) 4 (0) = T A (0) + w + dA (0) (8
where A (6) is the matrix inverse to matrix diag {ao¥, ac?} in the rough case or to
matrix s a,aksk“

%G! agalGHl

in the fine case, and o = y (t4, 24), &= At (by, 2y), i =1, 2, 0 =(k/{k + 1))8, (2,).
Using (2) and Condition 3 we obtain the estimates
[d* | < Ry (ky 0 %) my (24), | 8 | << Ryl 0, %) mf2y) (9
o & 0%, 8, 5], ¥ = [0, 84 (z) 0]
Ry (k, 6, T) = oF¥ 4 oFlg -k
for the components of vector 4 = @, d?], The validity of Lemma 1 follows from Pont-
riagin's lemma [1], representation (8) and estimates (9).

Let us describe the escape strategy of player V from the initial position (o, Zp)
e R. Weset

8,(z) = min {1, Yy¢; min T (y)0f" (y)}
ye&Xy(z)

We define a sequence of instants #; << £;*, i =1, 2,. ..
Inz [4]] = r (2°) &1 (z [;])
jnz [} > n (2°) 81 (2 [2), t & [ty 1)
£ = min {t; + 61 (z (t; — 1)), &'}
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[z [£]] = 6n (2°), |nz [¢t]] << 6r (2°), t = [t;, &)
to* = £y, 2° =z [f,]
On the interval [¢;, £;*] player V applies the special control
v(t) = Vi(o; t — 7, 2(t — 1), u(t —13)
(Ti = n(2°) 61, (z [&]) on (2 [1;])
o = (6 — 1y, O (2(8; — 1)), w)
2=z (t — 1)
which according to Lemma 1 ensures the estimate
Iz (£)] > el () (2 — &)™, t = [ + n () o (3 [1:]), 6*%) (10
Using the first esﬁmate in (6) and (10), we obtain
lnz ()] > Y Imaltsll, tE 1, 6 + n (2°) 01 (2 [])]
lna(t) |>al'(Z) (n (2°) 01 (2 (D)™, bt + n (2°) o1 (2l13]), £:*]
Since .
[z [£*]) > min {4n (2°), YVye1 T (3) 6,1 (29)} > n (2% 81 (z [8:*])
we have that £;* <T f;31 forall { 3> 1. On the interval [£*, £;4) player V app-
lies an arbitrary admissible control. We denote

- _12P ()
¢1(z) = max {Zf:tz{, 2P, (2), ygl;i) N OLMT)
Then, if ¢ (z) >> 1 (z) » we have
@0 < AZEL <n (@), Gl o1 G 1D =

t < [t t*]
Consequently, player V's control satisfies the informativeness condition. Thus, for
the initial position (£, %) & R we have constructed a strategy that is in accord with
the informativeness condition and ensures the fulfilment of the inequality
Iz ()] > (r (2) ' Ka (2 (1), t3> 8

Proof of Theorem 2 Forany & (0,11, 8 &= (0, ¥/,] andw €351
we denote by V, (v) (v = (fx, 4 & O, W) the operator which associates with each
triple (¢, z, u) & D (V) = [£y, tyx + 8] X R™ X P the lexicographic minimum
of vectors v from the set 2, (v; £, 2, u) such that F (¢, 2, u, v) = &p (24) v (¢,
Z)w in the rough case and  F(f, z, u, v) = &P (&) (@* + w? (£ —8,)7/ §')
A (t, z)in the fine case, |[v| < lu| -+ e. From Condition 2.2 it follows that set Q,
(v; % 2, u)is nonempty for all (¢, z, u) & D (v); for any absolutely continuous fun-
ction z (£) ( (£4) = 24) and for a meawmrable vector-valued function u (¢) & P
the vector-valued function v (£) = Vy (v; ¢, 2 (#), ¥ ()) is measurable and satis-

fies the inequalit
R P (O)< lu (@)l + o (1)
We introduce the notation (¢, and N, are some constants)

my (2) = NoSo(2)Ps (2) (1 + P31 (z))
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0, (Z) = ¢y min {-;— ( I'(z) )2} y 92* (Z) = yglxi’f(lz)ez (y)

Pyy (z) = max Py(y)
vEX:(2)

Lemma 2, IfConditions 1, 2,2 and 3 are fulfilled for game (1. 2), then con-
stants ¢, & (0, 1]and N, > 1 , determined by game (1. 2), exist such that for
any motion z (f) defined on (— oo, t*], any & € (0, 11, any o* & (0, 6,y
(z%)], and any T & (0, (2%, (2,) 0*)?] there exists a vector w, & S1 depend-
ing on %4, € and 7, such that the control p (t) v, ('v*; t—1, z2(f—1),
u(t—1), te lt*, t* + &%, (2,)] (Ve = (tyy 24, &, €2 6, (z,), w,)) ensur-
es the fulfilment of the inequality

|7z (2)] > ee,T (z4) (£ — t¥)Hh, t e [t* + o*, * + £%0,(z,)] (19

Representation (8) holds under the choice of control v (¢) indicated in the lemma,
where matrix 4 (o) is inverse to the matrix diag {bo*, bc!} in the rough case or to

the matrix
bs'  byp Rl
‘\ byst by’ “
in the fine case, and .
b= el (2,) ¥ (tey 25)y by =€ (2) A* (8, 2,), 1 =1,2

1
By =k (B2 ()2 Sﬂ — 515 ds

0

Using (3) and Condition 3 we obtain the estimates
jat | < Ry (K, 0, T) Mmy(24), [d® | << Ry (I, 0, 1) my (z4) (13)
o = (0%, €%0, (z,)], T = (0, (€20, (z,) 0*)?]
Ry (k, 0, ©) = of*'/r 4 gk g'lz  gh=s . ghe

for the components of vector d = [d', d?]. The assertion of Lemma 2 follows from
representation (8), estimates (13) and Pontriagin's lemma [1].

We denote
8, (2) = min{1, Yz¢, min T ()6} (y)}
yeXy(2)
o) = (z5:cy)
X2 (2) = mm min (Y5 82 (¥), coT' () 05" ()}
We set vene
g =g B, i=1,2,...,0(s) = °°1 -8
& = min {1’ (= = (Tg‘)’° = 1/2))%}’ P = min {% '3 <2Ta +‘3)}

From Condition 4, 2 it follows that 4 B > 1, i,e., { (4Pp) << + oo. Let us define
the intervals [#;, #*] of active and [¢;*, £;;,) of passive behavior of player V,
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Foreach i =1,2,. .. we define the instant {; as follows:
nz [8,]] = e2"0n (2°) 6, (2 [t;])
ez [8]] > e 240 1 (2°) 8, (2 [8]), £ & [61*, &)
while the instant #;* = min {¢ + &0, (z (f; — 1)), ¢/}, where 1, is defined
below and f; is such that
[z [87]] = %[y &1/0B) (n (2°9))2/e
|z [2]] < */; &1/ CB) (n (2%))2(%, t &= (4, &)
From the definition of instants ¢; and t;." and from the second estimate in (6)
it follows that
L* — t; > 81/B (n (2°))? 0, (2 (1)) (19
On the interval [¢;, £;*] player V applies the special control
v(t) = Va(vis t — 1y, 2(t — T3), u(f —T3))
T = &% (1 (2°) Oy (2 (1)) 0, (2 [6:1)? K (2 [13])
Vi = (ti == Ty ziv £y, 81'.2 82 (zi)t wi)

K (z) = min {1, min o, (y)}
yezXe(z)

From the second estimate in (6) and from Lemma 2 follows the existence of a vector
w; & S1 such that control v (£) ensures the estimates

lnz (6)] > Yo | 7wz (4], t < Wt + (0 (2°))? 0q (2 [£:))]
[nz ()] > eicoT (21) (& — t)*%, t e [ty + (n (20))20uelts]), &1

Hence we get that . (15)
iz ()] > e (n (29)24 %, (2 (8), ¢ < [ty 6]
and
[nz [£%1] > 35 n (%) 8, (z [6*])
Legy % <<t > 1.
Player V's control is set identically equal to zero on the interval [£*, fis1) .
Let ¢ (3) > €5 (2) ,
¢z (z) = max {2 [nz|®,  (2]nz -1 Py (5))s,
6%+ip () }
o K@) (55 (0) 0 WP

Then T (2 (£)) << T, & € [£;, ¢f | Consequently, the control v (f) constructed sat-
isfies the informativeness condition on interval [£;, £;]. From estimate (11) follows

i.* !;‘*

(popa<2 {|u@—rp+2es

Forall i = 2,3,. . .wehave &1 <C 4 — Ty, becauseif & — 43 < Y,
T << et (n () K (2 [61) < el (n (7)) oy (2 [ia))
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consequently, T; <Q ity — #;3 & — Gy since T, <Y, by < — T
for all i > 2. Hence

o liy t*—1y

(opa<z (S [Jumpa+ § Juepan+2e68) <ot

=2 t; 4 -7y

It was shown above that #; > {1 forall i > 1; from (14) it follows that & —
oo as i—> 0o. The escape strategy constructed in accord with the informativeness
condition guarantees estimate (15) for all £ & [£;, ¢.1], i > 1. Theorem 2 is prov-
ed,
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